

Atomic radiations in nuclear decay

T. Kibèdi (ANU) F.G. Kondev (ANL)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Talk is largely based on

<u>Kålmån Robertson</u> (ANU), Honours project, October 2010 (literature review, new model of Non-radiative transition rates)

Boon Quan Lee (ANU), special research project (BrIccEmission)

- > Radiative and Non-radiative atomic transitions in nuclear decay
- Nuclear and atomic data
- > Existing programs to evaluate atomic radiations
- > New model to evaluate Non-radiative transition energies and rates
- Future directions

Atomic radiations - Basic concept

- Vacancies on the inner-shell can be produced by
- electron impact
- photo ionization
- ion-atom collision
- internal conversion
- electron capture
- secondary processes accompanying β-decay or electron capture

Atomic radiations - Basic concept

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

NSDD2011, IAEA, Vienna, 4-8 April 2011

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Atomic radiations - Basic concept

NSDD2011, IAEA, Vienna, 4-8 April 2011

Initial vacancy

Atomic radiations - Basic concept

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

2 new secondary vacancies

Atomic radiations - Basic concept

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Coster-Kronig electron

Initial vacancy

$$E_{L1L2M1} = E_{L1} - E_{L2} - E_{M1}^{L2}$$

L1 L2 M1 Coster-Kronig transition 2 new secondary vacancies

Atomic relaxation and vacancy transfer

- Full relaxation of an initial inner shell vacancy creates vacancy cascade involving X-ray (Radiative) and Auger as well as Coster-Kronig (Non-Radiative) transitions
- Many possible cascades for a single initial vacancy!
- Typical relaxation time ~10⁻¹⁵ seconds!
- Many vacancy cascades following a single ionisation event!

For a single initial vacancy on the K-shell following nuclear decay

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Existing data bases

Nuclear data **ENSDF** continuously updated 2008Ki07, 2002Ba85 (Brlcc): Conversion coefficients **1998Sc28, Schönfeld :** *Electron Capture Probabilities* EC program Schönfeld, Chu & Brown Atomic Data (incomplete) **1972Bb16, Bambynek et al.,:** X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities 1984 update in an Conf. Proc. **1977La19, Larkins:** Semi-empirical Auger energies (for single initial vacancies only!)

1979Kr13, Krause, Radiative and Non-Radiative Yields for K and L Shells

Existing data bases

Atomic Data (cont)

Evaluated Atomic Data Library (EADL),

[1] D.E. Cullen, et al., "Tables and Graphs of Atomic Subshells and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1 - 100," Lawrence Livermore National Laboratory, UCRL-50400, Vol. 30, October 1991.

[2] D.E. Cullen "Program RELAX: A Code Designed to Calculate X-Ray and Electron Emission Spectra as Singly Charged Atoms Relax Back to Neutrality," Lawrence Livermore National Laboratory, UCRL-ID-110438, March 1992.

X-ray, Auger and Coster-Kronig energies & transition rates for single vacancies Neutral atom binding energies, primary source of atomic data need to be confirmed!

Atomic Data (cont.)

- •1994Hu23, Hubbell et al.: Review, Bibliography, and Tabulation of K, L, and higher atomic shell X-Ray Fluorescence Yields
 - many errors found, see J. Phys. Chem. Ref. Data, 33 (2004) 621!
- **1995ScZX**, **1996Sc06**, **Schönfeld and Janssen**: *absolute K and L X-ray rates*
- 2007Pu05, Puri: rel. L and M X-ray intensities
- 2009 Campbell (ADNDT 95 p115; not in NSR)
 - L1 Fluorescence and Coster-Kronig Probability
- 2009 Campbell for Group 4: review of atomic data X-ray transition and Coster-Kronig transition probabilities
 - primary source of data often not clearly stated
 - 1996Sc06 Scofield no data for Z<30
 - Last extensive theoretical DF work by Scofield (1974)
 - L-shell: extensive review is long overdue
 - M-shell almost no data
 - Should theory being used to fill the gaps in systematics?

Existing programs/data bases

	Nucl Data	Atomic Data	Atomic Radiations	Comment
EDISTR Dillman (1985)	ENSDF	unknown	unknown	NEA PSR-0191 EDISTR.
RADLST Burrows (1988)	ENSDF, Hslcc	1972Bb16 Bambynek	K,L X-rays and Auger	Used for MIRD
RELAX Cullen (1992)	ENDL	EADL	K,L,M,N X-rays and Auger	Neutral atom BE
IMRDEC Stepanek (1997)	ENSDF, own ICC	EPDL, EEDL	K,L,M,N X- rays and Auger	Bug: decay parent BE used; only Monte-Carlo vacancy propagation program
EMISSIN Schönfeld & Janssen (2000)	Manual DDEP	1995ScZX 1996Sc06 Schönfeld	K,L X-rays and Auger	Inaccurate below Z=25; Extended for L subs-shell 2006Be35 Marie-Martine Be

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Common problems / limitations

- Neutral atom binding energies are used for atoms with vacancies; i.e. for ions
- Single initial vacancy is considered. Secondary vacancies are ignored
- > Atomic radiations only from K and L shell
- Limited information on sub-shell rates
- Auger spectrum below ~1 keV is often omitted

New experimental results

A. Inoyatov et al. / Journal of Electron Spectroscopy and Related Phenomena 151 (2006) 193–198

KNN Auger spectrum of ¹¹¹Cd from the EC-decay of ¹¹¹In measured with 21 eV instrumental resolution and 2 eV s ycles with an exposition of 20 s per point in each sweep. Results of the spectrum decomposition into components are

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

New model to evaluate Non-Radiative transitions (Kalman`s model)

- Primary vacancies from BrIcc (for CE) and EC (for electron capture)
- Binding energies calculated using RAINE for electron configurations of a neutral atom or an ion with single or multiple vacancies
- Auger and CK transition rates calculated using non- relativistic perturbation theory with screened hydrogenic wave functions (Simple general formalism for all shells and transitions)
- Propagate vacancies until they reach valence shells (or the shells immediately below)
- Partially Defrosted Orbitals: calculations for all electronic configurations (complete treatment) but using single-vacancy transition rates

55 Fe + e- \rightarrow 55 Mn + v: *K*-Auger electrons (5 eV bins)

Slide courtesy of Kalman Robertson

 55 Fe + e- \rightarrow 55 Mn + v

 $3.7 \ x \ 10^6$ Auger electrons and $2.8 \ x \ 10^5 \ X$ -rays per 10^6 nuclear decays

L- and *M*- Auger electrons (5 eV bins)

Slide courtesy of Kalman Robertson

- Uses ENSDF file for input nuclear structure data
- Uses atomic data from Schönfeld and Janssen (1995ScZX,1996Sc06)
- Calculates X-ray and Auger-electron spectrum for K and L shell
- Future plans:
 - Calculate theoretical binding energies using the RAINE code
 - Incorporate up-to date atomic data on X-ray emission
 - Incorporate Kalman's model to calculate detailed energy spectra of Auger and Coster-Kronig transitions

BriccEmis results for ${}^{55}\text{Fe} + \text{e-} \rightarrow {}^{55}\text{Mn} + v$ *with Boon Quan Lee*

Results:

Vacancy Creation:

N(K):	0.8853(17)
N(L)	1.407(5)
N(L1):	0.314(5)
N(L2):	0.515(6)
N(L3)	0.576(7)

Auger Yield:

a(K):	0.679(5)
a(L1):	0.044(16)
a(L2):	0.99660(20)
a(L3):	0.99610(20)

BriccEmis results for ${}^{55}\text{Fe} + \text{e-} \rightarrow {}^{55}\text{Mn} + v$ *with Boon Quan Lee*

X-Ray Emission Probabilities:	Intensity	Energy	(keV)
<pre>p(XK)</pre>	0.284(5) 0.0066(10) 0.000104(7) 0.00204(13) 0.00309(17) 0.00523(21) 0.250(4) 0.0340(7) 0.166(3) 0.0845(14) 0.0340(7) 0.000(0)	5.89 5.88 6.486(0) 6.539(0)	99(0) 88(0) 6.536(0) 6.539(0)
Partial L-Shell X-Ray Emission Proba	ability:		
<pre>pX(L1-M2)p(XLBeta4) pX(L1-M3)p(XLBeta3) pX(L2-M1)p(XLEta) pX(L3-M1)p(XL1)</pre>	3.60E-5(23) 6.8E-5(5) 0.00204(13) 0.00309(17)	0.72 0.72 0.50 0.52	159(0) 226(0) 675(0) 564(0)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BriccEmis results for ${}^{55}\text{Fe} + \text{e-} \rightarrow {}^{55}\text{Mn} + \nu$ *with Boon Quan Lee*

Auger Electron Emission Probability: Intensity

p(eaL)=p(eaL1)+p(eaL2)+p(eaL3)....: 1.400(12)

- Existing atomic data on X-ray, Auger and Coster-Kronig transitions is incomplete
- Existing programs only cover radiations from single vacancies on the K and L-shell. Sub-shell transition rates are often not known. Neutral binding energies are used.
- New program being developed to treat all atomic shells and multiple vacancies to evaluate detailed energy spectra of atomic radiations using ENSDF file as input for nuclear structure data